Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138084

RESUMO

The viral agent SARS-CoV-2 clearly affects several organ systems, including the cardiovascular system. Angiopoietins are involved in vascular integrity and angiogenesis. Angiopoietin-1 (Ang1) promotes vessel stabilization, while angiopoietin-2 (Ang2), which is usually expressed at low levels, is significantly elevated in inflammatory and angiogenic conditions. Interleukin-6 (IL-6) is known to induce defective angiogenesis via the activation of the Ang2 pathway. Vasculitis and vasculopathy are some of the defining features of moderate to severe COVID-19-associated systemic disease. We investigated the serum levels of angiopoietins, as well as interleukin-6 levels and anti-SARS-CoV2 IgG titers, in hospitalized COVID-19 patients across disease severity and healthy controls. Ang2 levels were elevated in COVID-19 patients across all severity compared to healthy controls, while Ang1 levels were decreased. The patients with adverse outcomes (death and/or prolonged hospitalization) had relatively lower and stable Ang1 levels but continuously elevated Ang2 levels, while those who had no adverse outcomes had increasing levels of both Ang1 and Ang2, followed by a decrease in both. These results suggest that the dynamic levels of Ang1 and Ang2 during the clinical course may predict adverse outcomes in COVID-19 patients. Ang1 seems to play an important role in controlling Ang2-related inflammatory mechanisms in COVID-19 patients. IL-6 and anti-SARS-CoV2 spike protein IgG levels were significantly elevated in patients with severe disease. Our findings represent an informative pilot assessment into the role of the angiopoietin signaling pathway in the inflammatory response in COVID-19.

2.
Biomed Pharmacother ; 161: 114494, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36917886

RESUMO

Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Masculino , Camundongos , Animais , Humanos , Anticorpos Monoclonais/farmacologia , Proteínas de Membrana/metabolismo , Proteína ADAM10/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo
3.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804938

RESUMO

ADAM10 is a transmembrane metalloprotease that sheds a variety of cell surface proteins, including receptors and ligands that regulate a range of developmental processes which re-emerge during tumour development. While ADAM10 is ubiquitously expressed, its activity is normally tightly regulated, but becomes deregulated in tumours. We previously reported the generation of a monoclonal antibody, 8C7, which preferentially recognises an active form of ADAM10 in human and mouse tumours. We now report our investigation of the mechanism of this specificity, and the preferential targeting of 8C7 to human tumour cell xenografts in mice. We also report the development of novel 8C7 antibody-drug conjugates that preferentially kill cells displaying the 8C7 epitope, and that can inhibit tumour growth in mice. This study provides the first demonstration that antibody-drug conjugates targeting an active conformer of ADAM10, a widely expressed transmembrane metalloprotease, enable tumour-selective targeting and inhibition.

4.
Transl Oncol ; 15(1): 101265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768098

RESUMO

ADAM17 is upregulated in many cancers and in turn activates signaling pathways, including EGFR/ErbB, as well as those underlying resistance to targeted anti-EGFR therapies. Due to its central role in oncogenic pathways and drug resistance mechanisms, specific and efficacious monoclonal antibodies against ADAM17 could be useful for a broad patient population with solid tumors. Hence, we describe here an inhibitory anti-ADAM17 monoclonal antibody, named D8P1C1, that preferentially recognizes ADAM17 on cancer cells. D8P1C1 inhibits the catalytic activity of ADAM17 in a fluorescence-based peptide cleavage assay, as well as the proliferation of a range of cancer cell lines, including breast, ovarian, glioma, colon and the lung adenocarcinoma. In mouse models of triple-negative breast cancer and ovarian cancer, treatment with the mAb results in 78% and 45% tumor growth inhibition, respectively. Negative staining electron microscopy analysis of the ADAM17 ectodomain in complex with D8P1C1 reveals that the mAb binds the ADAM17 protease domain, consistent with its ability to inhibit the ADAM17 catalytic activity. Collectively, our results demonstrate the therapeutic potential of the D8P1C1 mAb to treat solid tumors.

5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638814

RESUMO

The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell-cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph-ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph-Eph interfaces. One Eph-Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor-receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.


Assuntos
Receptor EphB2/química , Receptor EphB2/metabolismo , Transdução de Sinais , Animais , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Receptor EphB2/genética , Relação Estrutura-Atividade
6.
Heliyon ; 7(6): e07200, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095559

RESUMO

More than 3.5 million people have died globally from COVID-19, yet an effective therapy is not available. It is, therefore, important to understand the signaling pathways that mediate disease progression in order to identify new molecular targets for therapeutic development. Here, we report that the blood serum levels of ephrin-A1 and the sheddase ADAM12 were significantly elevated in COVID-19 patients treated at SUNY Downstate Hospital of Brooklyn, New York. Both ephrin-A1 and ADAM12 are known to be involved in inflammation and regulate endothelial cell permeability, thus providing a gateway to lung injury. The clinical outcome correlated with the ephrin-A1 and ADAM12 serum levels during the first week of hospitalization. In contrast, the serum levels of TNFα were elevated in only a small subset of the patients, and these same patients also had highly elevated levels of the sheddase ADAM17. These data indicate that ephrin-A1-mediated inflammatory signaling may contribute to COVID-19 disease progression more so than TNFα-mediated inflammatory signaling. They also support the notion that, in COVID-19 inflammation, ADAM12 sheds ephrin-A1, while ADAM17 sheds TNFα. Furthermore, the results suggest that elevated serum levels and activity of cytokines, such as TNFα, and other secreted inflammatory molecules, such as ephrin-A1, are not simply due to overexpression, but also to upregulation of sheddases that release them into the blood circulation. Our results identify ephrin-A1, ADAM12, and other molecules in the ephrin-A1 signaling pathway as potential pharmacological targets for treating COVID-19 inflammation.

7.
Cancer Lett ; 467: 50-57, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31593799

RESUMO

ADAM proteases are multi domain transmembrane metalloproteases that cleave a range of cell surface proteins and activate signaling pathways implicated in tumor progression, including those mediated by Notch, EFGR, and the Eph receptors. Consequently, they have emerged as key therapeutic targets in the efforts to inhibit tumor initiation and progression. To that end, two main approaches have been taken to develop ADAM antagonists: (i) small molecule inhibitors, and (ii) monoclonal antibodies. In this mini-review we describe the distinct features of ADAM proteases, particularly of ADAM10 and ADAM17, their domain organization, conformational rearrangements, regulation, as well as their emerging importance as therapeutic targets in cancer. Further, we highlight an anti-ADAM10 monoclonal antibody that we have recently developed, which has shown significant promise in inhibiting Notch signaling and deterring growth of solid tumors in pre-clinical settings.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Neoplasias/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/química , Proteína ADAM10/metabolismo , Proteína ADAM17/química , Proteína ADAM17/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Domínio Catalítico , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Conformação Proteica , Domínios Proteicos
8.
Int J Biochem Cell Biol ; 105: 123-133, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30343150

RESUMO

The Eph-ephrin signaling pathway mediates developmental processes and the proper functioning of the adult human body. This distinctive bidirectional signaling pathway includes a canonical downstream signal cascade inside the Eph-bearing cells, as well as a reverse signaling in the ephrin-bearing cells. The signaling is terminated by ADAM metalloproteinase cleavage, internalization, and degradation of the Eph/ephrin complexes. Consequently, the Eph-ephrin-ADAM signaling cascade has emerged as a key target with immense therapeutic potential particularly in the context of cancer. An interesting twist was brought forth by the emergence of ephrins as the entry receptors for the pathological Henipaviruses, which has spurred new studies to target the viral entry. The availability of high-resolution structures of the multi-modular Eph receptors in complexes with ephrins and other binding partners, such as peptides, small molecule inhibitors and antibodies, offers a wealth of information for the structure-guided development of therapeutic intervention. Furthermore, genomic data mining of Eph mutants involved in cancer provides information for targeted drug development. In this review we summarize the distinct avenues for targeting the Eph-ephrin signaling pathway, including its termination by ADAM proteinases. We highlight the latest developments in Eph-related pharmacology in the context of Eph-ephrin-ADAM-based antibodies and small molecules. Finally, the future prospects of genomics- and proteomics-based medicine are discussed.


Assuntos
Efrinas/efeitos dos fármacos , Efrinas/metabolismo , Receptores da Família Eph/efeitos dos fármacos , Receptores da Família Eph/metabolismo , Proteínas ADAM/efeitos dos fármacos , Proteínas ADAM/metabolismo , Anticorpos/química , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação , Desenvolvimento de Medicamentos , Efrinas/química , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptores da Família Eph/genética , Transdução de Sinais/efeitos dos fármacos
9.
Cell ; 171(7): 1638-1648.e7, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29224781

RESUMO

Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation.


Assuntos
Proteína ADAM10/química , Secretases da Proteína Precursora do Amiloide/química , Proteínas de Membrana/química , Proteólise , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Cristalografia por Raios X , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Receptores Notch/metabolismo , Transdução de Sinais
10.
J Exp Med ; 213(9): 1741-57, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27503072

RESUMO

The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance.


Assuntos
Proteína ADAM10/fisiologia , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/química , Proteína ADAM17/fisiologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores Notch/fisiologia
11.
Neurosci Res ; 87: 1-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24956133

RESUMO

Upon spinal cord injury, the central nervous system axons are unable to regenerate, partially due to the repulsive action of myelin inhibitors, such as the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp). These inhibitors bind and signal through a single receptor/co-receptor complex that comprises of NgR1/LINGO-1 and either p75 or TROY, triggering intracellular downstream signaling that impedes the re-growth of axons. Structure-function analysis of myelin inhibitors and their neuronal receptors, particularly the NgRs, have provided novel information regarding the molecular details of the inhibitor/receptor/co-receptor interactions. Structural and biochemical studies have revealed the architecture of many of these proteins and identified the molecular regions important for assembly of the inhibitory signaling complexes. It was also recently shown that gangliosides, such as GT1b, mediate receptor/co-receptor binding. In this review, we highlight these studies and summarize our current understanding of the multi-protein cell-surface complexes mediating inhibitory signaling events at the neuron/myelin interface.


Assuntos
Proteínas da Mielina/química , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Receptor Nogo 2 , Ligação Proteica , Estrutura Terciária de Proteína , Receptores do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
12.
J Cell Sci ; 125(Pt 24): 6084-93, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23108669

RESUMO

The ADAM10 transmembrane metalloprotease cleaves a variety of cell surface proteins that are important in disease, including ligands for receptor tyrosine kinases of the erbB and Eph families. ADAM10-mediated cleavage of ephrins, the ligands for Eph receptors, is suggested to control Eph/ephrin-mediated cell-cell adhesion and segregation, important during normal developmental processes, and implicated in tumour neo-angiogenesis and metastasis. We previously identified a substrate-binding pocket in the ADAM10 C domain that binds the EphA/ephrin-A complex thereby regulating ephrin cleavage. We have now generated monoclonal antibodies specifically recognising this region of ADAM10, which inhibit ephrin cleavage and Eph/ephrin-mediated cell function, including ephrin-induced Eph receptor internalisation, phosphorylation and Eph-mediated cell segregation. Our studies confirm the important role of ADAM10 in cell-cell interactions mediated by both A- and B-type Eph receptors, and suggest antibodies against the ADAM10 substrate-recognition pocket as promising therapeutic agents, acting by inhibiting cleavage of ephrins and potentially other ADAM10 substrates.


Assuntos
Proteínas ADAM/metabolismo , Anticorpos Monoclonais/metabolismo , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Bovinos , Adesão Celular , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Transdução de Sinais
13.
Stem Cells Dev ; 21(15): 2852-65, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22533504

RESUMO

Studies in mice indicated that activation of the erythroid stress pathway requires the presence of both soluble KIT ligand (KITL) and the glucocorticoid receptor (GR). To clarify the relative role of KITL and GR in stress erythropoiesis in humans, the biological activities of soluble full length- (fl-, 26-190 aa), carboxy-terminus truncated (tr-, 26-162 aa) human (hKITL) and murine (mKITL) KITL in cultures of cord blood (CB) mononuclear cells (MNCs) and CD34(pos) cells that mimic either steady state (growth factors alone) or stress (growth factors plus dexamethasone [DXM]) erythropoeisis were investigated. In steady state cultures, the KITLs investigated were equally potent in sustaining growth of hematopoietic colonies and expansion of megakaryocytes (MK) and erythroid precursors (EBs). By contrast, under stress erythropoiesis conditions, fl-hKITL generated greater numbers of EBs (fold increase [FI]=140) than tr-hKITL or mKITL (FI=20-40). Flow cytometric analyses indicated that only EBs generated with fl-hKITL remained immature (>70% CD36(pos)/CD235a(neg/low)), and therefore capable to proliferate, until day 8-12 in response to DXM. Signaling studies indicated that all KITLs investigated induced EBs to phosphorylate signal transducer and activator of transcription 5 (STAT5) but that extracellular-signaling-regulated-kinases (ERK) activation was observed mainly in the presence of fl-hKITL. EBs exposed to fl-hKITL also expressed higher levels of GRα than those exposed to mKITL (and tr-hKITL) which were reduced upon exposure to the ERK inhibitor U0126. These data reveal a unique requirement for fl-hKITL in the upregulation of GRα and optimal EB expansion in cultures that mimic stress erythropoiesis.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Regulação da Expressão Gênica , Receptores de Glucocorticoides/metabolismo , Fator de Células-Tronco/fisiologia , Animais , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Megacariócitos/fisiologia , Camundongos , Fragmentos de Peptídeos/fisiologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Glucocorticoides/genética , Estresse Fisiológico
14.
Biochem Biophys Res Commun ; 413(1): 92-7, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21872576

RESUMO

Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.


Assuntos
Gangliosídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Livre de Células/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Proteínas da Mielina/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Estrutura Terciária de Proteína , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Superfície Celular/genética
15.
Protein Sci ; 20(4): 684-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21308849

RESUMO

The inhibition of axon regeneration upon mechanical injury is dependent on interactions between Nogo receptors (NgRs) and their myelin-derived ligands. NgRs are composed of a leucine-rich repeat (LRR) region, thought to be structurally similar among the different isoforms of the receptor, and a divergent "stalk" region. It has been shown by others that the LRR and stalk regions of NgR1 and NgR2 have distinct roles in conferring binding affinity to the myelin associated glycoprotein (MAG) in vivo. Here, we show that purified recombinant full length NgR1 and NgR2 maintain significantly higher binding affinity for purified MAG as compared to the isolated LRR region of either NgR1 or NgR2. We also present the crystal structure of the LRR and part of the stalk regions of NgR2 and compare it to the previously reported NgR1 structure with respect to the distinct signaling properties of the two receptor isoforms.


Assuntos
Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Receptores de Peptídeos/química , Animais , Cristalografia por Raios X , Proteínas Ligadas por GPI , Modelos Moleculares , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/metabolismo , Receptor Nogo 1 , Ligação Proteica , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Superfície Celular , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Curr Opin Cell Biol ; 19(5): 534-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17928214

RESUMO

Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.


Assuntos
Comunicação Celular/fisiologia , Efrinas/metabolismo , Receptor EphA1/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular/fisiologia , Endocitose/fisiologia , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Efrinas/ultraestrutura , Humanos , Sistema Nervoso , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Receptor EphA1/ultraestrutura
17.
Cell ; 123(2): 291-304, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16239146

RESUMO

The Eph family of receptor tyrosine kinases and their ephrin ligands are mediators of cell-cell communication. Cleavage of ephrin-A2 by the ADAM10 membrane metalloprotease enables contact repulsion between Eph- and ephrin-expressing cells. How ADAM10 interacts with ephrins in a regulated manner to cleave only Eph bound ephrin molecules remains unclear. The structure of ADAM10 disintegrin and cysteine-rich domains and the functional studies presented here define an essential substrate-recognition module for functional interaction of ADAM10 with the ephrin-A5/EphA3 complex. While ADAM10 constitutively associates with EphA3, the formation of a functional EphA3/ephrin-A5 complex creates a new molecular recognition motif for the ADAM10 cysteine-rich domain that positions the proteinase domain for effective ephrin-A5 cleavage. Surprisingly, the cleavage occurs in trans, with ADAM10 and its substrate being on the membranes of opposing cells. Our data suggest a simple mechanism for regulating ADAM10-mediated ephrin proteolysis, which ensures that only Eph bound ephrins are recognized and cleaved.


Assuntos
Proteínas ADAM/metabolismo , Efrina-A2/metabolismo , Efrina-A3/metabolismo , Efrina-A5/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Proteína ADAM10 , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sequência Conservada , Cristalografia por Raios X , Cisteína/química , Dissulfetos/química , Efrina-A3/química , Efrina-A5/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrólise , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Filogenia , Testes de Precipitina , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor EphA3/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
J Virol ; 77(13): 7300-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12805428

RESUMO

Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.


Assuntos
Metiltransferases/metabolismo , Poxviridae/enzimologia , Capuzes de RNA , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Teste de Complementação Genética , Metiltransferases/genética , Dados de Sequência Molecular , Plasmídeos , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Mol Cell ; 10(3): 585-97, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12408826

RESUMO

Here we investigated how capping and methylation of HIV pre-mRNAs are coupled to Pol II elongation. Stable binding of the capping enzyme (Mce1) and cap methyltransferase (Hcm1) to template-engaged Pol II depends on CTD phosphorylation, but not on nascent RNA. Both Mce1 and Hcm1 travel with Pol II during elongation. The capping and methylation reactions cannot occur until the nascent pre-mRNA has attained a chain length of 19-22 nucleotides. HIV pre-mRNAs are capped quantitatively when elongation complexes are halted at promoter-proximal positions, but capping is much less efficient during unimpeded Pol II elongation. Cotranscriptional capping of HIV mRNA is strongly stimulated by Tat, and this stimulation requires the C-terminal segment of Tat that mediates its direct binding to Mce1. Our findings implicate capping in an elongation checkpoint critical to HIV gene expression.


Assuntos
Produtos do Gene tat/metabolismo , HIV-1/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo , Transcrição Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1/enzimologia , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...